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Abstract

Several limiting factors to large-scale aerodynamic design on unstructured meshes are addressed. A set of
design codes based on a discrete adjoint method is extended to a multiprocessor environment using a shared
memory approach. A nearly linear speedup is demonstrated, and the consistency of the linearizations is shown to
remain valid. The full linearization of the residual is used to precondition the adjoint system, and a significantly
improved convergence rate is obtained. A new mesh movement algorithm is implemented and several advantages
over an existing technique are presented. A large-scale inviscid optimization is performed in which a substantial
drag reduction is demonstrated. An inviscid design case using a multielement wing is also shown.
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Introduction
With the advent of modern computer architectures, aerody-

namic designers have sought to make use of high-fidelity compu-
tational fluid dynamics (CFD) codes in their everyday design ef-
forts. While considerable progress has been made towards this
goal, realistic use of such tools remains hindered by the extreme
computational burden associated with such tasks.

A large focus has recently been placed on design algorithms.
In the area of gradient-based optimization, research has focused
on several methods for obtaining sensitivity information, and
many of these approaches rely on an adjoint-variable formulation
for efficiently computing sensitivity derivatives. The adjoint
technique is particularly attractive for aerodynamic design prob-
lems in which there are a large number of design variables, yet
relatively few constraints. Examples of both continuous and dis-
crete approaches to this method can be found in Refs. 1-9.

In Refs. 1-3, a discrete adjoint technique has been imple-
mented on unstructured grids for two- and three-dimensional
flows. This work was primarily aimed at performing accurate lin-
earizations of Reynolds-averaged Navier-Stokes solvers, using
both compressible and incompressible formulations. Results in-
dicated highly accurate sensitivity information for fully turbulent
flows. However, the cost of such computations in a sequential-
processing environment prevented large-scale design cases from
being pursued. The preconditioning strategy used for the adjoint
system in these references was based on a first-order lineariza-
tion of the residual and often led to poor convergence rates. In
addition, experience showed that the tension-spring analogy used
for mesh movement was insufficient when large changes in the
geometry were necessary.

In the current work, the linearizations developed in Refs. 1-3
are modified to run in a parallel processing environment. The do-
main decomposition and parallelization strategies are discussed,
resulting speedups are demonstrated, and the linearizations are
shown to remain consistent. A new preconditioning strategy for
the adjoint solver is implemented and significantly improved
convergence is demonstrated for turbulent flow. A new mesh
movement strategy based on linear elasticity theory is also
adopted, and several advantages over the tension-spring ap-
proach are presented. Several design cases are also shown.

Nomenclature
Lift and drag coefficients
Chord
Vector of design variables
Cost function
Lagrangian function
Vector of dependent variables
Discretized residual vector
Nodal displacements
Vector of nodal displacements
Computational mesh
Vector of costate variables
Poisson’s ratio

Design Methodology
The governing flow equations are the Reynolds-averaged

Navier-Stokes equations,10 coupled with the one-equation turbu-
lence model of Spalart.11 The solvers employed in the current work
make use of a finite-volume formulation discretized on unstruc-
tured meshes and are described at length in Refs. 3, 12, and 13. The
meshes used in this study have been generated using the software
described in Refs. 14 and 15.

Given a steady-state flow solution in the form of
, a Lagrangian function can be defined as

(1)

where  represents a cost function to be minimized and
 represents a vector of Lagrange multipliers, or costate variables.

Differentiating this expression yields the following:

(2)

Since the vector of costate variables is essentially arbitrary, the co-
efficient multiplying  can be eliminated using the fol-
lowing equation:

(3)
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Eq. 3 represents the discrete adjoint equation for the design prob-
lem. Once the solution for  has been formed, the remaining terms
in Eq. 2 can be evaluated to give the desired sensitivity information:

(4)

Details on the implementation and solution of these equations is
presented in Refs. 1-4.

Domain Decomposition Methodology
In the current work, the mesh partitioner MeTiS16 is used to di-

vide the original mesh into subdomains suitable for a parallel envi-
ronment. Given the connectivities associated with each node in the
mesh and the number of partitions desired, MeTiS returns an array
that designates a partition number for each node in the mesh. The
user is then responsible for extracting the data structures required
by the specific application.

Due to the gradient terms used in the reconstruction procedure,
achieving second-order accuracy in the flow solver requires infor-
mation from the neighbors of each mesh point as well as their
neighbors. In the present implementation, the gradients of the de-
pendent variables are computed on each mesh partition, then the re-
sults are scattered onto neighboring partitions. This approach dic-
tates that a single level of “ghost” nodes be stored on each
processor. These ghost nodes that are connected to mesh points on
the current partition are referred to as “level-1” nodes. Similarly,
the neighbors of level-1 nodes that do not lie on the current parti-
tion are designated “level-2” nodes. This terminology is illustrated
graphically in Figure 1.

The adjoint solver requires similar information; however, unlike
the flow solver, residual contributions must be written into off-pro-
cessor memory locations associated with level-2 mesh points. This
implies that a second level of ghost information must be retained
along partition boundaries.

Software has been developed to extract the required information
from a pre-existing mesh based on the partitioning array provided
by MeTiS. This domain decomposition operation is done prior to
performing any computations. The user is also able to read in exist-
ing subdomains and their corresponding solution files and reparti-
tion as necessary. This capability is useful in the event that addi-
tional processors become available or processors currently being
employed must be surrendered to other users. In addition, software
has been developed that reassembles partition information into glo-
bal files and aids in post-processing the solutions.

Parallelization Strategy
Each of the codes has been modified to run in a multiprocessor

environment using a shared memory implementation. This ap-
proach has been chosen because the primary hardware to be utilized
is a Silicon Graphics Origin 2000 system. In the current implemen-
tation, ghost information is exchanged across partition boundaries
by loading data into global shared arrays which are accessible from
each processor. Simple compiler directives specific to the Origin
2000 system are used to spawn child processes for each partition in
the mesh. This approach is also readily extendable to a message-
passing implementation, in the event that distributed memory sys-
tems become more readily available.

The speedup obtained by parallelizing the flow and adjoint solv-
ers is demonstrated in Figs. 2 and 3. For this test, turbulent flow
over the ONERA M6 wing shown in Fig. 4 is computed. The mesh
contains 359,536 nodes with a wall spacing of  of the
mean aerodynamic chord (MAC). The surface mesh consists of
9,129 nodes. The freestream Mach number is 0.3, the angle of at-
tack is , and the Reynolds number is  based on the MAC.
It can be seen that a nearly linear speedup is obtained. Similar be-
havior has been observed with the mesh movement and gradient
evaluation codes.

Figure 1.  Information required beyond partition boundaries.
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Figure 2.  Parallel speedup obtained for the flow solver.

Figure 3.  Parallel speedup obtained for the adjoint solver.
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To verify that the linearizations performed in Refs. 1-3 have re-
mained consistent through the port to the parallel environment, sen-
sitivity derivatives obtained using the parallel solvers on eight pro-
cessors are compared with centered finite differences. Here,
turbulent flow over an ONERA M6 wing is computed using a
freestream Mach number of 0.3, an angle of attack of , and a
Reynolds number of  based on the MAC. The mesh used for
this case consists of 16,391 nodes. All results have been converged
to machine accuracy, and a step size of  has been used for
the finite-difference computations. For this case, the cost function
is a linear combination of lift and drag, and the design variables
generated using the software described in Ref. 17 are depicted in
Figure 21. It can be seen from Table 1 that the derivatives are
highly consistent.

Adjoint Preconditioning Scheme
In Refs. 1-4, a preconditioned GMRES algorithm has been used

to solve Eq. 3. In these references, an incomplete LU-factorization
with no fill-in allowed [ILU(0)] is employed as the preconditioner.
The factorization is based on the first-order linearization of the re-
sidual, thereby avoiding excessive storage penalties associated with
the higher-order stencil for the inviscid fluxes. It has been shown in
Ref. 3 that the GMRES algorithm may stall and a converged adjoint
solution may frequently be difficult to obtain using this precondi-
tioner, particularly for viscous flows. This has been found to be the
case for both two- and three-dimensional problems.

In an effort to develop a more robust adjoint solver, an improved
ILU(0) preconditioning technique based on the complete lineariza-
tion of the residual is employed in the current work. As shown in
Ref. 18, the additional memory required for storing the complete
linearization is roughly four times that of the first-order matrix for
three-dimensional problems. This requirement can be somewhat al-
leviated by utilizing half-precision storage for these terms. As de-
scribed in Refs. 2 and 3, the linearizations required for the matrix-
vector products in the GMRES algorithm are stored for the nearest-
neighbor terms; these linearizations are also stored in half-precision
in the current work. Experiments have shown that this strategy
yields a total memory requirement of about 50% more than the pre-
vious version of the solver.

To demonstrate the improved performance using the higher-
order preconditioner, adjoint solutions are computed in parallel for
turbulent flow over the ONERA M6 wing shown in Fig. 4 using
eight processors. The freestream Mach number is , the angle
of attack is , and the Reynolds number is  based on the
MAC. For this case, 10 GMRES cycles are used with 10 search di-
rections and 5 restarts. The CFL number is set to . Results for
the first- and second-order preconditioning strategies are shown in
Fig. 6. It can be seen that the solver based on the first-order precon-
ditioner fails to converge the solution, whereas the method employ-
ing the complete linearization steadily reduces the residual by
nearly five orders of magnitude. Fig. 7 shows the same computa-
tions performed using full- and half-precision storage for the sec-

Figure 4.  Surface mesh for viscous ONERA M6 wing.

Figure 5.  Location of design variables for ONERA M6 wing.
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Table 1.  Sensitivity derivatives for ONERA M6 wing.

Design
Variable

Finite
Difference

Adjoint Percent Error

Camber #3 2.7762 2.7763 0.004%

Thickness #4 -0.03970 -0.03971 0.025%

Twist #4 0.00747 0.00747 0.000%

Shear #1 0.62023 0.62050 0.044%
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ond-order preconditioner and matrix-vector products. It can be seen
that the convergence histories are identical.

Mesh Movement Strategy
As stated in Refs. 1-4, a tension-spring analogy has previously

been employed as a means for modifying volume meshes as the
geometric shape is changed throughout the design process. It has
been found that this algorithm lacks the robustness necessary for
the design environment, particularly for large surface deformations,
highly-stretched meshes, and essentially all three-dimensional ge-
ometries. For this reason, a new approach based on linear elasticity
theory has been implemented to overcome the shortcomings of the
previously used method.

In the approach taken in the current work, it is assumed that the
computational mesh obeys the isotropic linear elasticity relations
which take the following form in two dimensions:19

(5)

(6)

where  is Poisson’s ratio and the nodal displacement vector is
given by . Despite the assumption of an isotropic ma-
terial, a spatially-varying value of Poisson’s ratio is used in order to
maintain the physical integrity of highly skewed cells. This value
has been chosen based onad hoc numerical experiments and is set
so that the coefficient  is equal to the aspect ratio of the
local cell. In this manner, low aspect ratio cells mimic compressible
materials such as cork, while high aspect ratio cells tend to behave
in an incompressible fashion, much like rubber. This mesh move-
ment scheme has also been utilized in Ref. 20, with a similar modi-
fication for distorted cells.

The linear elasticity approach to mesh movement has demon-
strated several advantages over the tension-spring analogy. For this
test, the flap on a multielement airfoil has been deflected  and
each of the mesh movement strategies have been applied. Figure 8
shows a near-field view of the baseline mesh in the region between
the main element and flap. Figures 9 and 10 show the meshes re-
sulting from the spring and elasticity methods, respectively. It can
be seen that the spring analogy allows gaps to form in the mesh,
whereas the elasticity approach pulls in nearby material to fill the
voids. This behavior has been observed in several cases.

Figure 6.  Convergence of the adjoint solution for different
preconditioners.

Figure 7.  Convergence of the adjoint solution for full- and half-
precision matrix storage schemes.
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It has been found that the elasticity approach also allows for sig-
nificantly larger geometric deformations. In a similar test, the flap
of a multielement airfoil has been deflected from its baseline posi-
tion shown in Figure 11. As can be seen from Figs. 12 and 13, the
spring approach has yielded an invalid mesh, while the elasticity
formulation has handled the deformation in an acceptable manner.
Similarly, when a series of flap translations and rotations is applied
to the geometry shown in Figure 14, the meshes resulting from the
elasticity technique maintain a high degree of quality as shown in
Figure 15.

Figure 8.  Near-field view of baseline mesh.

Figure 9.  Near-field view of mesh after applying spring analogy.

Figure 10.  Near-field view of mesh after applying linear elasticity
method.

Figure 11.  Near-field view of mesh with flap in baseline position.

Figure 12.  Near-field view of mesh with flap rotated using the
spring analogy.

Figure 13.  Near-field view of mesh with flap rotated using linear
elasticity method.
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To further quantify the differences between the two mesh move-
ment schemes, derivatives of lift and drag due to horizontal transla-
tions of a main element and flap are examined. In theory, the deriv-
ative due to a translation of the flap should be equal and opposite in
sign to a derivative due to an equal and opposite translation of the
main element. In practice however, this relationship is limited by
the finite topology of the mesh and the manner in which it varies
during a shape modification.

To demonstrate this behavior, derivatives of lift and drag due to
equal and opposite horizontal translations of the main element and
flap on the two-element airfoil shown in Figure 1 have been com-
puted for a turbulent flow. For this case, the freestream Mach num-
ber is 0.25, the Reynolds number is , and the angle of attack
is . Table 2 shows the lift and drag derivatives due to transla-
tions of the main element and flap using the spring analogy, and the
last column is the sum of these two derivatives which ideally would
be zero. However, it can be seen from the table that the derivatives
are not at all equal in magnitude, and the drag derivatives are not
even of opposite sign. This inconsistency would surely have an ad-

verse effect on an optimization procedure. Table 3 shows the same
derivatives obtained using the linear elasticity formulation. Al-
though these derivatives do not sum to zero, they do exhibit oppo-
site signs and are much closer in magnitude. This tendency has
been observed in several cases and seems to indicate that the linear
elasticity formulation maintains the mesh topology in a more con-
sistent fashion.

Design Cases

Recovery of Experimental Flap Configuration
The first test case is a two-dimensional turbulent flow problem

for which a target pressure distribution is sought. In Ref. x, an ex-
perimental study of the multielement airfoil geometry shown in Fig.
17 has been performed. It can be seen from Fig. 18 that computa-
tions using the baseline geometry are in slight disagreement with
the experimental results. It has been found that the model used in
the experiment had a non-uniform gap and overlap, and that the flap
deflected at high dynamic pressures. The goal of the current work is
to determine the position of the flap based on the pressure distribu-
tion obtained in the experiment. The improved mesh movement ca-
pability described earlier allows for the flap adjustment required by
such a problem.

The freestream Mach number is 0.7, the angle of attack is ,
and the Reynolds number is . For this case, the design vari-
ables are the rotation and x- and y-translations of the flap. After x
design cycles, the flap has been repositioned as shown in Fig. 17. It

Figure 14.  Mesh with flap in baseline position.

Figure 15.  Mesh with flap translated  and rotated
.

Figure 16.  Geometry used for translation derivatives.

Table 2.  Derivatives of lift and drag due to flap and main element
translation using the spring analogy.

Derivative

-1.4785 2.4033 0.9248

0.0183 0.0277 0.0460

Table 3.  Derivatives of lift and drag due to flap and main element
translation using linear elasticity.

Derivative

-3.8064 3.8671 0.0607

0.1722 -0.1615 0.0107
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can be seen from Fig. 18 that the resulting agreement with the ex-
perimental results is significantly improved.

Inviscid Wing Design
An inviscid wing optimization is performed using an ONERA

M6 wing geometry. The mesh consists of 357,900 nodes and is
shown in Figure 19. The freestream Mach number is 0.84 and the
angle of attack is . For these conditions, the baseline geome-
try exhibits a swept shock extending from the root leading edge and
a strong normal shock further aft as shown in Figure 20. The objec-
tive for this example is to reduce drag while maintaining a specified
lift. The 28 shape design variables are shown in Figure 21, and the
the angle of attack is also allowed to vary.

Cross-sections of the initial and final geometries can be seen in
Figure 22. After 5 design cycles, the drag has been decreased from
xxx to xxx, a 27% reduction. Pressure distributions at several loca-

tions across the span of the wing are shown in Figure 23, and den-
sity contours for the final geometry are shown in Figure 24.

Figure 17.  Baseline and modified geometries for multielement
airfoil problem.

Figure 18.  Pressure distributions for multielement airfoil problem.
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Figure 19.  Surface mesh for inviscid ONERA M6 wing.

Figure 20.  Density contours for the baseline geometry.

Figure 21.  Location of design variables for ONERA M6 wing.
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Multielement Wing
In order to handle an arbitrary number of three-dimensional ele-

ments parameterized by the package described in Ref. 17, software
has been developed to combine multiple bodies which employ in-
dependent parameterizations. To evaluate this capability, a simple
inviscid three-dimensional test case is examined. For this problem,
the airfoil section depicted in Fig. 25 is extruded in a spanwise di-
rection to create a  swept wing as shown in Fig. 26. The surface
grid shown contains 48,077 nodes and the volume mesh consists of
249,037 nodes and 1,335,153 tetrahedra. Accurate analysis of such
a geometry would require a finer mesh and incorporation of viscous

Figure 22.  Cross-sections of the initial and final wing geometries. Figure 23.  Pressure distributions for the initial and final wing
geometries.

Figure 24.  Density contours for the final geometry.
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effects, however the problem is merely designed to validate the ca-
pability of handling multiple elements parameterized indepen-
dently.

For this case, the main element and flap are parameterized sepa-
rately using the 38 design variables shown in Fig. 27. The angle of
attack is also allowed to vary. The objective is to reduce the drag
while maintaining a specified lift. The freestream Mach number is
0.75 and the baseline angle of attack is .

After 5 design cycles, the drag has been reduced from 0.0185 to
0.0166, while the lift has maintained its original value. Cross-sec-
tions of the baseline and modified geometries can be seen in Fig.
28, while pressure distributions are shown in Fig. 29.

Figure 25.  Airfoil section used for inviscid multielement wing.

Figure 26.  Surface mesh for inviscid multielement wing.

Figure 27.  Location of design variables for multielement wing.
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Figure 28.  Cross-sections of the initial and final wing geometries.
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Final Paper
For the final version of the paper, we plan to show more design

examples, including a large-scale three-dimensional viscous test
case. Comparisons with complex-variable derivatives may also be
incorporated.
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